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Abstrac:t-This paper treats the finite axisymmetric deflection and snapping of spherical caps which
are point loaded at the apex and simply supported at the boundary. The problem is formulated
using a stationary potential energy principle and solved numerically. The response of caps up to
critical loads and into the postbuckling regime to eversion and beyond is studied and detailed.
Phenomena such as snapthrough, snapback, multiple load free equilibria, eversion and irreversibility,
are found to occur.

I.INTRODUcnON

The development ofnon-linear continuum mechanics seemed to reach a pinnacle ofactivity
some 25 years ago. No doubt, this was spurred on by success during the previous decades
in solving problems arising in non-linear elasticity and non-linear fluid mechanics. The
advent of new non-linear materials, not adequately described by these earlier solutions,
contributed to the activity.

It was only natural that shell theory would be affected by the same enthusiasm towards
constructing non-linear theories. The outcome of this activity has in large measure been
successful, especially in laying a firm foundation for the non-linear theory. Two com­
prehensive treatments detailing research of the recent period, differing somewhat in
viewpoint, can be found in the articles of Naghdi[l] and of Libai and Simmonds[2].

Perhaps one of the disappointments of the research on the non-linear shell theories is
that there are not more analytical solutions to the governing equations. Unquestionably,
this stems from the immense complexity of the theory. We cite Antman[3], as a researcher
who has addressed some of the issues.

The overall situation is in reality better than it appears at first sight. The availability
of high-speed computers and the development of new numerical techniques have given rise
to the numerical treatment of important technological problems. Additionally, the overall
literature on shells is so vast, e.g. see the bibliographies ofNash[4, 5], that for most problems
one can find a reasonable body of knowledge to use as a starting point.

New technologies require solutions to problems largely of academic interest 25 years
ago. The advent of rubber caps as an integral part of the spring-actuator mechanism in
computer and typewriter keyboards, push button telephones and a host of other similar
applications has generated a need for large deformation solutions of rubber-like axisym­
metrical shells.

The problem we address in this paper is to deal with the large axisymmetric deformation
of spherical rubber caps loaded at their apex by a point load and simply supported at their
boundary. We consider the full range ofgeometries from very shallow to full hemispherical
caps. We are interested in buckling or snapping phenomena, post-buckling behaviour to
complete eversion, and return/rom the everted to the virgin state. Our method of attack is
numerical; our aim is insight. Thus, the value of our study may be two-fold. First, to
contribute to the the design and engineering ofactuator caps or related technological devices,
and second, to provide the genus for ideas on extracting analytical solutions from the non­
linear theories.

As indicated above, there is a literature on the problem of interest herein. To begin
with, Kaplan[6] in 1974 gave a review of the situation regarding the deformation and
buckling of complete spherical shells and spherical caps. Most of this work is concerned
with pressure loading and clamped edge conditions. The former condition gives rise to
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follower load interference and stability effects not at issue for our problem; the latter
condition unfortunately prevents the full range of phenomena encountered for the freely­
supported shelL Much of the behaviour identified herein is unique to incomplete spherical
shells with simply supported edges and apical point loads. The behaviour of clamped,
complete, or pressure loaded spheres are very different, and are discussed in Refs [7-10],
and their respective bibliographies.

We summarize briefly those studies related to this research. The first non-linear analysis
was published by Biezeno in 1935[11]. In 1957, Chien and Hu[12] considered the more
general problem of a spherical cap subject to an axisymmetric ring load, which in the
limiting case of apex loading, produced results similar to Biezeno. Ashwell[13] in 1959 carried
out a clever analysis, based on Love's principle of applicable surfaces, in which he used
linear shallow shell theory to fit together inner everted and outer undeformed spherical
regions of the shell. The first numerical analysis of the point loaded cap was done by Archer
in 1962[14]. In the same year, Evan-Iwanowski et al. and subsequently in 1964, Loo and
Evan-Iwanowski published extensive experimental results for point loaded caps[15, 16].
Also in 1964, Wilson and Spier[17] considered the deep spherical shell using a finite­
difference technique, but restricted the analysis to loads less than critical. Mescall[18, 19] in
the mid-1960s, presented the first numerical analysis ofload-defiection behaviour into the
post-buckling region. Further numerical studies were carried out by Bushnell[20] in 1967
and more recently by Parisch[21Jin 1979. The latter gave the shape ofthe meridian contours
for shells deformed to eversion.

We now summarize the content of this paper. In Section 2, we give the basic geometrical
and physical equations that govern the finite strain and rotation analysis of spherical shells.
These include a statement of the governing variational principle and an expression for the
shell surface strain energy function. The latter is derived for a shell, which in its undeformed
configuration, is a homogeneous isotropic sphere of uniform thickness, and the three­
dimensional material properties of which are characterized as M ooney-Rivlin hyperelastic.

As already mentioned, our approach is to solve the problem at hand through a
numerical scheme. This is developed in Section 3 for shell deformations free ofany restriction
on strain or rotation. The contour of the deformed shell meridian is first represented by a
discrete number of segmental functions whose nodal positions and slopes comprise new
unknown variables in the problem. These are then determined so as to correspond to
stationary values of the total potential energy of the shell and hence, according to our
variational principle, correspond to a deformed equilibrium configuration. Stationary points
are found by a technique which utilizes the gradient and Hessian of the potential energy
surface and which is accelerated using line search.

In Section 4, we present detailed results. These are comprised of load-deflection curves,
critical loads, and deformed contours for shells which vary from very shallow to very deep.
The results are compared with those available in the cited literature. For sufficiently thin
shells, we find a full range of deformation behaviour involving snapthrough, snapback,
eversion and irreversibility from eversion back to the virgin state. Thicker shells exhibit a
somewhat more restricted range of behaviour. Finally, we discuss the confirmation of these
predictions by our own experimentation with spherical rubber caps.

2. THE BASIC EQUATIONS

The equations ofnon-linear shell theory consist ofa system ofdifferential and algebraic
equations. These are comprised of the equilibrium equations, the strain-displacement
equations, and the constitutive relations. The theory governs large deformations which are
comprised generally of finite strain and rotation. For the axisymmetric deformation of
shells of revolution, a sample of these equations is provided in the paper of Cohen and
Pastrone[22]. The sphere problem ofinterest here is usually treated on the basis ofa suitably
simplified set ofgoverning differential equations. Such is certainly the case for the literature
cited in the Introduction. An alternative to solving such a systemis to employ a variational
principle. This is the line of attack that we shall develop in this paper.
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Since the analysis herein is confined to axisymmetric deformations, we begin by review­
ing some of the geometry associated with the axisymmetric deformation of shells of revol­
ution. The deformed configuration is assumed in the form

x = r+n(s)n, r = r(s)e,(t/J)+z(s)ez (I)

where r is the position vector to a point on the deformed reference surface d. In writing eqn
(Ih, we have employed a cylindrical polar coordinate system (r, ljJ, z) with an associated
orthonormal basis of vectors (ero e,;, ez) and with ez along the axis of symmetry. The par­
ameters (s, ljJ) are surface coordinates which measure arc length along a meridian and angle
along a parallel circle, respectively. These curves comprise lines ofcurvature on d. The unit
outward normal n to d is given by

D = cos Oez+sin Oe, (2)

in terms ofthe angle 0 between the normal and the axis ofsymmetry. In eqns (I), n measures
distances along n to a generic point x in the shell.

The undeformed configuratioll of the shell is given by eqns (I) with the quantities x,
r, D, r, ljJ, z, n, 0, s, replaced by X, R, N, R, ell, Z, N, e, S, respectively. For the problem at
hand, where the undeformed shell is spherical, the pertinent functions are

R = a sin (Sla), Z = a cos (Sla), ell = Sia (3)

where a is the radius of the shell mid-surface [/ and S is the arc length along a meridian
measured from the pole. We assume also that the thickness h of the shell is constant. The
requirement that the reference surface [/ be the undeformed mid-surface imposes the
condition -h12 ~ N ~ h12.

In order to completely characterize the deformation of the shell, we assume that [/
map into d, and further that the deformation satisfy a relaxed Kirchhoff hypothesis. The
latter condition means that the deformation carries the direction of N into the direction of
n, and so transverse shear deformation is being ignored. However, unlike the classical
Kirchhoffhypothesis, there is no constraint upon the stretch along the normal. In particular,
this means that generally d will not be the mid-surface of the deformed shell. To make the
deformation mathematically explicit, we need to prescribe the functions

s = s(S), ljJ = ell, n =n(N). (4)

Straightforward computations employing eqns (1)-(4) lead to the standard results

(I +ktn)
VI = (I+K1N/t>

dn
V3=-

dN
(5)

for the principal stretches Vi' i = 1,2,3, at an arbitrary point of the shell. The quantities A.m,

IX = 1,2, are the principal stretches on (J given by

ds
A.I =dS' (6)

The principal stretches are along the lines of curvature of d, the principal curvatures of
which km, IX = I, 2, are given by

(7)

We note that K I = K 2 = Iia in eqns (5).
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Other quantities associated with the deformation can be calculated. In particular, the
ratio of corresponding volume elements (giG) 1/2 arising from the deformation is given by

(8)

where (alA) 1/2 is the ratio of corresponding reference surface elements specified by

(9)

In this work, we shall confine attention to shells constructed of rubber-like materials.
These are generally incompressible and we impose this as a constraint on the deformation,
namely, we assume

(gIG)112 = 1. (10)

To extract the implication of eqn (10), we combine eqns (5h, (8), (9) and (10) to obtain a
differential relation in dn/dN. We integrate this relation and invoke approximations com­
mon in thin shell theory to arrive at an explicit form for eqn (4h, namely

n = (NfJ"IA2)+ [(A1A2Ia)- (k 1+k2)/2] (NIAjA2)2

- {(k 1+k2) [(A 1A2Ia)-(k 1+k2)/2]+k1k 2/3} (NIAIA2)3. (11)

In the preceding discussion, we have summarized the required geometrical background
for our study. In order to deal with the mechanics of the shell, we must ascribe its material
properties. This we do by assuming the shell material to be hypereJastic. In other words,
there exists for the material a strain energy density function e, measuring the energy stored
by the deformation per unit volume of the shell. We assume e to be of the Mooney-Rivlin
form; thus the material is homogeneous, isotropic and incompressible, with e given by

(12)

where Cj, C2 are material constants

(13)

and

(14)

We remark that for small strains, eqns (13) model the linear behaviour of incompressible
materials when the material constants are set to Ct = 5G/8 and C2 = -GIS, where G is the
material shear modulus. Other reasonable choices for Cj and C2 exist; however, this choice
provides the best simulation of linear behaviour as strains become larger. This will permit
calculations in Section 4 which can be compared with the results published in the literature.

The objective of shell theory is to develop a two-dimensional theory of thin three­
dimensional bodies. In other words, we need a constitutive relation of the type

(15)

for a strain energy (J per unit area of the undeformed reference surface Y. Equation (15)
has the functional form appropriate to represent a homogeneous isotropic shell.

In order to obtain an explicit form for eqn (15), we compute the total strain energy Iff
in the shell in terms of (J and e, respectively. The result is
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tf =1uA 1/2 = r eG 1/2

.Y J1'
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(16)

where f denotes the undeformed shell volume and for convenience, we have dropped
explicit dependence on the Euclidean surface and volume differentials. From eqn (I6h, by
arguments now standard in continuum mechanics, we conclude immediately that

f
hl 2

U = e{v«(N)} (I +N/a) 2 dN
-h12

(17)

where eqn (14) has been used to eliminate V3' To evaluate eqn (17), we substitute eqn (II)
into eqns (5)1.2' The result can then be used in eqns (13) and (14) to yield II and 12 in terms
of N and the surface quantities .1.«, k«. Finally, elimination of II and 12 from eqn (12) and
substitution of the result into eqn (17) yields an integrand which can be dealt with. We
obtain a suitable constitutive relation after dropping terms negligible within the framework
of thin-shell theory. The result is

(1 = c\[{A.f+Ai+A\2A2"2-3}h

+ {oW +3A.I 4A.2"2)+aW +3.1.12A2"4)+401a2A.\3A2" 3}h3/12]

+C2[{(A.~ -aM 2/4)-1 +(Ai -aih2/4)- J +MA.i -3}h

+ {aiAi+4ala2AIA.2+aiAnh3/12] (18)

where

(19)

Since transverse shear deformation is ignored in the basic formulation, the preceding
constitutive relation, eqn (18), contains no energy terms associated with transverse shear.
For details of the calculation we refer the reader to Brodland[23]; for the analytic procedure
leading to eqn (18) we acknowledge the work of Libai and Simmonds[24], who utilized a
similar line of attack in dealing with cylindrical shells. Similar shell theories have recently
been proposed by Simmonds[25] and Taber[26].

The final ingredient of the theoretical basis for our analysis lies in the variational
principle alluded to in the opening paragraph of this section. We define the total potential
energy, "Ir, of the shell to be the functional of the deformed configuration given by

if'" = G-Pw (20)

where P is the magnitude of the verticalload at the shell apex and w is the axial deflection
at the load. We now lay down the requirement that deformed equilibrium configurations of
the spherical shell are those which correspond to local stationary values ofif'". The preceding
is the governing variational principle.

3. THE NUMERICAL ANALYSIS

The basis of the numerical analysis lies in approximating the meridian configurations
by a finite number ofsmooth segments ofa prescribed shape. These segments are separated
by adjacent boundary points Nj> j = 1,2, ... , m+ I, calJed nodes. The shape of each of the
m seaments comprising the meridian is represented by an explicit two-parameter family of
segmental functions Sj' These start and end at the neighbouring nodal points Nj and Nj+I,

respectively. The slope ofadjacent segmental functions Sj, Sj+ .. is required to be continuous
at their common node N j + I' The location of each node N j is specified by its coordinates
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Fig. I. Segment f~rmulation.
r

(rj,zJ The parameters I'jI> I'jl, which will appear in thejth segmental function, are deter­
mined by specifying OJ at N j and by using the continuity at N j + ,. In summary, we remark that
the approximate representation of the meridian will be controlled by specifying n = 3(m + 1)
variables (r j , Zj' OJ)' which for convenience we denote by Xi' i = 1,2, ... , n.

The segmental functions Sj are defined with respect to a conveniently chosen local
rectangular Cartesian coordinate system (~, '1), whose origin is at Njand whose ~-axis passes
through N j + ,. The coordinate e is non-dimensional and normalized so that the interval of
definition of Sj is 0 ~ ~ ~ 1. The coordinate '1 has the dimension of length. For a graphic
representation of the situation, we refer the reader to Fig. 1.

We assume Sj to be given explicitly by the formula

(21)

where Ij is the distance between the boundary nodes Nj , Nj+ I, namely

(22)

and l'ja, (X = 1,2, the parameters referred to above, are required to be small relative to unity,
Le. I'ja « 1. This condition does not restrict global strains or rotations, but rather restricts
the maximum spacing of nodes so that displacements and slopes with respect to the local
(e, '1) coordinate system are small. The orientation of the local (e, '1) coordinate system
relative to the global axes (r, z) is defined by the angle (Xj between the ~- and r-axes. It is
given by

(23)

If we now differentiate eqn (21) with respect to e, then from the smallness of I'ja, we
see immediately that (d'1llj de) represents the angle between the tangent line to Sj and the
e-axis. Indeed, we also see that Yjt and l'j2 are just the angles made by Sj with the e-axis at
the nodes N j and N j + I> respectively. Furthermore, it is obvious that (d2~/1J d'12

) defines the
principal curvature of Sj to the same order of approximation.

The position and slope of the segmental meridian contour Sj are given in terms of the
global (r, z) coordinate system by the equations

r(e) = rj(I-~)+rj+ le+'1(~) sin ct.j

z(e) = Zj(l-~)+Zj+ t e+'1(e) cos ct.j

(24)

(25)

(26)
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The principal stretches and principal curvatures of the shell reference surface, eqns (6)
and (7), respectively, are for the jth segment given respectively by

J. r(e)
Al = /.., A2= R(e) (27)

J

and

-1 d2'1
k2=

sin 9(e)
(28)k l = If de (e), r(e)

The above formulation is valid for arbitrarily large strains and rotations.
The principle enunciated at the end of Section 2 provides the modus operandi for

completing the numerical analysis and finding the equilibrium configurations of the shell.
To begin with, the integral involved in eqn (16)( to calculate the total strain energy is one
dimensional, namely

if =2ftf: RtT dS. (29)

To evaluate eqn (29), first we write the surface strain energy tTj, for the segment Sj. in terms
of the variables Xi by substitution of eqns (21)-(28) into eqn (18). Next, we use Gauss
quadrature to numerically integrate eqn (29) over the segment Sj. and obtain the total strain
energy as the sum

m p

(/ = 2ft r r R(Gk)jktT(Gk )·
j= I k-I

(30)

In eqn (30), the Gk> k = 1,2, ... ,p, are Gauss points on the e-interval [O,IJ, and the fk are
the associated weighting factors. If we substitute eqn (30) into eqn (20), then the total
potential energy is now of the form

(31)

By virtue of eqn (31), the variational principle now assumes the form of an n-variable
stationary value problem. The boundary conditions at the free edge of the shell now enter
the problem as constraints on the variables Xi' We observe that our problem has been
reduced to a standard non-linear programming problem.

The most efficient techniques for solving the non-linear programming problem take
the form of descent methods which utilize first and possibly higher order derivatives of the
hypersurface ir(Xi) with respect to the variables Xi' The method employed here make use
of a Taylor'S expansion of ir(Xi) to second-order terms in the change di of Xi> i.e. we write

where for convenience we have employed an obvious vector notation and have set

(32)

g =grad ir, H = grad2 "/y. (33)

We note that g is a vector called the gradient of"/Y and H is a linear operator called the
Hessian of"/Y.

Equation (32) provides a parabolic approximation to the potential energy hypersurface
at point x. To minimize 'the value of the former, we choose
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p

Fig. 2. Freely supported spherical cap.

(34)

The value of d provided by eqn (34) can be used to iterate x towards the critical value
X.tal of "fI/'. Indeed, repeated iteration using eqns (33) and (34) provides a sequence of values
x, converging to x.lal •

In order to accelerate the numerical convergence, we employ a line search technique.
This entails obtaining xr + I from the formula

X,+I = x,+Gtd, (35)

where ex is determined by trial and error to be the value for which "fI/' is an extreme along
the line defined by (x" d,). This process is numerically efficient by virtue of the fact that
multiple evaluations of"fl/' require considerably less computing time than calculation of dr.

4. RESULTS AND DISCUSSION

The axisymmetric deformation of the point loaded spherical shell shown in Fig. 2 is
characterized by two non-dimensional geometric parameters. The first of these is the shell
half angle eo. The other is a parameter A. defined by

..1. 2 = [l2(I-v 2)]1/2(alh) sin2 eo
~ [l2(l-v2)]1/2(2Hlh).

(36)

The approximate form of eqns (36) is valid for sufficiently small eo. The parameter eo
provides a measure of the depth of the shell. The shell may be characterized as shallow when
eqn (36h holds, i.e. if eo ~ 2HIL. The parameter ..1. 2 essentially is a measure ofshell thickness.
Large A. 2 values are associated with thin shells.

The literature cited in the introductory section as pertinent to the problem at hand
restricts consideration to linear elastic response which is characterized by the usual elastic
moduli E and v. As already mentioned, we can choose the Mooney-Rivlin constants Cl> C2

to model linear incompressible materials with arbitrary Young's modulus E and Poisson's
ratio v = 0.5[23]. It is then convenient to nondimensionalize the load P and apex deflection
w by defining new variables p. and w· according to

w· = wlH. (37)

Our aim is to study the axisymmetric behaviour of spherical caps over as wide a range
ofgeometries and loads as possible. The experimental research of Evan-Iwanowski et al.[15]
and the numerical research of Bushnell[20] shows that caps with ..1.

2 > 100 can exhibit
asymmetric deformations. Hence, attention is restricted to caps with A. 2 ~ 100.
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Fig. 3. Load-deflection curve and meridian contours for ~o = 22.5° and).2 = 100.
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The full range of cap geometries is studied by considering shells of half angle 5°, 22,50
and 90° ; A.2 values of 16, 36, 64 and 100 are used to show the effects of thickness variation.
The numerical procedure requires 8 elements to model shallow caps <eo = 5°,22,50) and 16
elements to model hemispheres <eo = 90°).

The numerical analysis was carried out by specifying apex displacement rather than
load. This allowed both stable and unstable equilibrium states to be observed and the
mechanism of snapping to be clearly demonstrated. Figure 3 shows the load-deflection
curves and meridian contours for a cap with eo = 22,50 and A. 2 = 100. The correspondence
between meridian contours and points on the load-deflection curve is indicated by upper
case letters. The initial state is B. State A is a cap with outward load and deflection.
Increasing inward deflection produces increasing load up to a critical point D followed by
a decrease in load to zero at E. States from D to E are unstable as the load carrying
capacity of the shell decreases with increasing displacement. These states can, however, be
demonstrated experimentally by specifying displacement rather than load.

If load rather than displacemell/ is specified, loading proceeds along the path A-B-C­
D as before, but a slight increase above the load carried at D produces a snapping to point
H. The load at D is called the critical load Pc; the transition from configuration D across
to configuration H is called snapthrouglz. Note that snapthrough involves a significant
change in apex displacement for an infinitesimal change in load. Furthel' loading occurs
along H to J where large strains occur. Reverse load-governed deflection occurs along
path J-H-G-F-J. New meridian configurations are produced along H-G-F-J. From J,
snapthrough occurs to state A.

If displacement is controlled rather than load, loading occurs along A-B-C-D-E, and
the shell then snaps from E to a new configuration F. This behaviour is known as snapback.
Rather than having a large dimple at E, it has snapped to a new shape involving complete
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Fig. 4. Load-deflection curves for shallow shells.

eversion, except for a small dimple at the centre. State F has the same apex deflection as E,
but it has a significantly different shape and apex loading, and its strain energy is approxi­
mately 30% less. From F to G, the reverse load required to maintain a particular deflection
decreases. At G, the cap is everted and is in equilibrium without external load. Additional
downward loading takes the shell from G to H to J.

As the cap is returned to its initial state with apex displacement-governed deformation,
it again follows the curve H-G-F, but a new sequence of equilibrium configurations is
produced along F-J-K. At K, the cap snaps back to C (snapback) and returns to B along
the everting curve C-B.

One can demonstrate experimentally that snapback, like snapthrough, involves
dynamic phenomena. Indeed, this was observed in our experiments on spherical rubber caps
to be described later. After moving through a sequence of equilibrium states such as C-D­
E, the cap reaches a state of unstable equilibrium E. It quickly moves away from this
unstable state as some of the strain energy of the cap is converted to kinetic energy. As a
new equilibrium F is approached, some of the kinetic energy is converted back to cap strain
energy, while the rest is dissipated due to small damping effects in the rubber. This new and
stable equilibrium state is very rapidly attained.

Since the analysis performed here neglects inertial effects, our numerical scheme is
incapable of finding states of motion between equilibrium points such as E and F. Fortu­
nately, our numerical formulation quickly found post-snapping equilibria, such as F, as we
moved away from the pre-snapping equilibrium E. The fact that our analysis produced no
other equilibrium states for apical loading attests to the dynamic nature of the problem in
the snapping domain. Furthennore, it suggests that to find such equilibria, we would need
to allow for and find the distributed loading necessary to maintain them.

Figures 4 and 5 show the load-deflection curves for shallow and hemispherical shells,
respectively. From Fig. 4, it is clear that the results are essentially independent of eofor
eo ~ 22.so. This value corresponds to H/L = 0.20, which is slightly beyond the common
limit of H/L = 1/6 for shallow shells. This is reasonable in view of the fact that the axial
coordinate of an undefonned spherical cap measured from its base is

(38)

which simplifies to the approximation
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Fig. 5. Load-deflection curves for hemispherical caps.

z = H{I-(R/L)2}
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(39)

when the cap is shallow. Equation (39) indicates that all shallow spherical caps have the
same essentially parabolic shape and differ from one another only in the shell rise H. In
other words, all shallow spherical caps can be mapped on to each other by simply sealing
their radial and axial coordinates. Such a mapping is not possible for non-shallow spherical
caps, and explains in part (consider mappings of the standard shallow shell equations) why
their response differs from that of shallow caps.

The mechanical response ofa spherical cap is due to a combination ofmembrane effects
and bending effects. The former are characterized by symmetry in load-deflection behaviour
between the virgin and everted states. In the absence of any bending effects, a hinged
spherical cap would be free to assume a stress-free spherical everted shape. The load­
deflection response of the everted cap would be identical to that of the uneverted cap. For
thin caps (e.g. ). 2 = 100), bending stresses are small and their effects are negligible. This is
verified in Fig. 3 by the almost perfect symmetry between the load-deflection curve portion
A-B-C-D-E of the virgin cap with the portion H-G-F-J-K of the everted cap, as well as
by the symmetry between corresponding meridian contours. The only evidence of bending
effects is seen near the edge of the cap where they cause slight curvature differences between
corresponding meridian contours such as C and F.

As the cap becomes thicker, ).2 becomes smaller and bending effects which increase as
hJ ~ ().2t J increase more quickly than membrane effects which increase as h ~ ().2)-1.
Thus, bending effects become relatively more important until they eventually predominate.
Bending behaviour is characterized by monotonic load-deflection behaviour. An increasing
asymmetry is thus seen in Fig. 4 as A.2 decreases, whence at A.2 = 16 the bending effects
become so much stronger than nonmonotonic membrane effects that the load-deftection
response of the cap becomes monotonic. Similar behaviour occurs in hemispherical caps as
shown in Fig. 5, except that here membrane effects are more influential because of the
greater depth of the shell.

As is illustrated in Fig. 4, a force-free everted state does not occur in sufficiently thick
shells. The self-equilibrating everted state is possible in thinner caps since bending effects
are then sufficiently reduced that they can be overcome by rncmbrane forces. Otherwise,
the edges ofthe cap tend to roll back and restore the shell to its rest position. Two important
features are observed at the edge of the everted meridian contour (see Fig. 3). To begin
with, the meridian edp curvature has the same sign here and in every other configuration
as it does in the initial state, since membrane effects must operate along a sufticient distance
from the edge of the cap before sufficient force is developed to reverse meridian curvature.
Secondly, the edge slope is ofopposite sign here compared to the initial configuration. This
is clearly necessary if membrane hoop effects which produce inward radial forces, are to



1352 G. W. BRODLAND and H. CoHEN

10

Po
Eh

3

-- Brodland (A2 .,00)
--- Blezeno (A2 .1.)
---- Melca. (A2 .'00)

-10 - - - Evan-Iwanowtkl (A2-82)
tJ. Parlach ( A2 .,00)

Fig. 6. Comparative load-deflection curves.

w
H

8

6

4

2

---------- <:Non--------------.........--.-
... A_lEltQ'O
DE_1It1

a
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prevent bending effects from rolling the edges down and returning the cap to its rest
configuration.

Figure 5 shows that the load-defiection curves for hemispherical shells are very similar
in shape to those of shallow shells. We point out that the knee in the curve at the critical
load is somewhat higher and much sharper for the deep shell case. The meridian contours
of a hemispherical shell (not shown) are similar to those of the shallow caps, except tbat
the radial displacements, especially at the edge, are more pronounced.

Figure 6 presents a comparison of the load-defiection curve obtained here for A. 2 = 100
with those available from the cited literature. The differences are most predominant in the
post-buckling region.

For many practical applications, it is the critical load Pc which is of primary interest.
Figure 7 shows the critical load Pc as a function of A.. Curves calculated by Biezeno{ll],
Chien and Hu[12], Ashwell[13], Archer[14], and Mescall[18] are also shown, as are the
experimental values obtained by Ashwell{13] and Evan-Iwanowski et a/.[IS]. The critical
load calculated here is in good agreement with curves calculated by other researchers.
Furthermore, the curve calculated here predicts slightly higher values of Pc than have been
obtained experimentally. Theoretical values of Pc must necessarily be higher than those
obtained experimentally, as even the small imperfections which are always present in
specimens cause the shell to collapse at a lower load.
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(a)

(b)

Fig. 10. Photographs of a deformed hemispherical cap: (a) configuration produced on path to
eversion; (b) configuration produced on return path.



Pc
Eh&

Deflection and snapping of spherical caps

I_-----PAOIIE

Fig. 8. Experimental apparatus.

- 8yllImetrlca' Def_1lona

--- Aa)'lllllletrlcal o.t_tlonI

Fig. 9. Experimentalload-deflection curve.

1355

Since the load-deflection curves and snapping behaviour obtained herein are sig­
nificantly different from those published in the literature, a supplementary experimental
investigation was performed. The primary experimental difficulty in modelling the caps is to
support edges against reversing axial loads while ensuring that radial forces and meridional
moments are not present at this edge. This difficulty can be overcome by mounting the
edges of the cap on cantilevered wires as shown in Fig. 8, with bushings to prevent moment
transfer. A reversible load is applied through a radially restrained plunger, attached to the
apex of the shell with a small screw. Since facilities were not available to the authors to
fabricate rubber specimens, a nearly hemispherical piece of rubber ball with A2 = 9S was
used. The specimen had visible imperfections. The deflection to snapping is symmetrical,
but the configurations passed through during snapping are not (Fig. 9). The specimen does
not assume a symmetrical configuration immediately after snapping. It is not clear whether
this is an inberentproperty ofthe geometry, a result of imperfections, or a result ofmaterial
hysteresis. Oearly, however, the experimental curves exhibit the essential features predicted
by the numerical analysis. Figure 10 shows photographs of the specimen for an apex
deftection of w* ;;;; I.S on the path to eversion and on the return path. These photographs
correspond respectively to the points E and F shown in Fig. 3.
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